z-logo
open-access-imgOpen Access
Estimating the Quality of Reprogrammed Cells Using ES Cell Differentiation Expression Patterns
Author(s) -
Bo Zhang,
Beibei Chen,
Tao Wu,
Yuliang Tan,
Shuang Qiu,
Zhenyu Xuan,
Xiaopeng Zhu,
Runsheng Chen
Publication year - 2011
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0015336
Subject(s) - cellular differentiation , microbiology and biotechnology , biology , reprogramming , expression (computer science) , cell , computer science , genetics , gene , programming language
Somatic cells can be reprogrammed to a pluripotent state by over-expression of defined factors, and pluripotency has been confirmed by the tetraploid complementation assay. However, especially in human cells, estimating the quality of Induced Pluripotent Stem Cell(iPSC) is still difficult. Here, we present a novel supervised method for the assessment of the quality of iPSCs by estimating the gene expression profile using a 2-D “Differentiation-index coordinate”, which consists of two “developing lines” that reflects the directions of ES cell differentiation and the changes of cell states during differentiation. By applying a novel liner model to describe the differentiation trajectory, we transformed the ES cell differentiation time-course expression profiles to linear “developing lines”; and use these lines to construct the 2-D “Differentiation-index coordinate” of mouse and human. We compared the published gene expression profiles of iPSCs, ESCs and fibroblasts in mouse and human “Differentiation-index coordinate”. Moreover, we defined the Distance index to indicate the qualities of iPS cells, which based on the projection distance of iPSCs-ESCs and iPSCs-fibroblasts. The results indicated that the “Differentiation-index coordinate” can distinguish differentiation states of the different cells types. Furthermore, by applying this method to the analysis of expression profiles in the tetraploid complementation assay, we showed that the Distance index which reflected spatial distributions correlated the pluripotency of iPSCs. We also analyzed the significantly changed gene sets of “developing lines”. The results suggest that the method presented here is not only suitable for the estimation of the quality of iPS cells based on expression profiles, but also is a new approach to analyze time-resolved experimental data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here