z-logo
open-access-imgOpen Access
Regulation of HIF-1α and VEGF by miR-20b Tunes Tumor Cells to Adapt to the Alteration of Oxygen Concentration
Author(s) -
Lei Zhang,
Bo Li,
Zhonghan Yang,
Haoshu Fang,
Guimei Zhang,
Zuo-Hua Feng,
Bo Huang
Publication year - 2009
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0007629
Subject(s) - oxygen , vegf receptors , reactive oxygen species , oxygen metabolism , microbiology and biotechnology , chemistry , cancer research , biology , organic chemistry
The regulation of HIF-1α is considered to be realized by pVHL-mediated ubiquitin-26S proteasome pathway at a post-transcriptional level. The discovery of a class of small noncoding RNAs, called microRNAs, implies alternative mechanism of regulation of HIF-1α. Here, we show that miR-20b plays an important role in fine-tuning the adaptation of tumor cells to oxygen concentration. The inhibition of miR-20b increased the protein levels of HIF-1α and VEGF in normoxic tumor cells; the increase of miR-20b in hypoxic tumor cells, nevertheless, decreased the protein levels of HIF-1α and VEGF. By using luciferase reporter vector system, we confirmed that miR-20b directly targeted the 3′UTR of Hif1a and Vegfa . On the other hand, the forced overexpression of HIF-1α in normoxic tumor cells downregulated miR-20b expression. However, HIF-1α knockdown in hypoxic tumor cells caused the increase of miR-20b. The differential expression of miR-20b has important biological significance in tumor cells, either enhancing the growth or favoring the survival of tumor cells upon the oxygen supply. Thus, we identify a novel molecular regulation mechanism through which miR-20b regulates HIF-1α and VEGF and is regulated by HIF-1α so to keep tumor cells adapting to different oxygen concentrations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here