
Analysis of Group Randomized Trials with Multiple Binary Endpoints and Small Number of Groups
Author(s) -
JiHyun Lee,
Michael J. Schell,
Richard G. Roetzheim
Publication year - 2009
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0007265
Subject(s) - randomized controlled trial , intraclass correlation , bonferroni correction , medicine , clinical endpoint , statistics , mathematics , psychometrics
The group randomized trial (GRT) is a common study design to assess the effect of an intervention program aimed at health promotion or disease prevention. In GRTs, groups rather than individuals are randomized into intervention or control arms. Then, responses are measured on individuals within those groups. A number of analytical problems beset GRT designs. The major problem emerges from the likely positive intraclass correlation among observations of individuals within a group. This paper provides an overview of the analytical method for GRT data and applies this method to a randomized cancer prevention trial, where multiple binary primary endpoints were obtained. We develop an index of extra variability to investigate group-specific effects on response. The purpose of the index is to understand the influence of individual groups on evaluating the intervention effect, especially, when a GRT study involves a small number of groups. The multiple endpoints from the GRT design are analyzed using a generalized linear mixed model and the stepdown Bonferroni method of Holm.