z-logo
open-access-imgOpen Access
Addressing Reported Pro-Apoptotic Functions of NF-κB: Targeted Inhibition of Canonical NF-κB Enhances the Apoptotic Effects of Doxorubicin
Author(s) -
Brian Keith Bednarski,
Albert S. Baldwin,
Hee Jin Kim
Publication year - 2009
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0006992
Subject(s) - doxorubicin , apoptosis , nf κb , cancer research , biology , microbiology and biotechnology , downregulation and upregulation , iκbα , viability assay , chemistry , biochemistry , chemotherapy , gene , genetics
The ability of the transcription factor NF-κB to upregulate anti-apoptotic proteins has been linked to the chemoresistance of solid tumors to standard chemotherapy. In contrast, recent studies have proposed that, in response to doxorubicin, NF-κB can be pro-apoptotic through repression of anti-apoptotic target genes. However, there is little evidence analyzing the outcome of NF-κB inhibition on the cytotoxicity of doxorubicin in studies describing pro-apoptotic NF-κB activity. In this study, we further characterize the activation of NF-κB in response to doxorubicin and evaluate its role in chemotherapy-induced cell death in sarcoma cells where NF-κB is reported to be pro-apoptotic. Doxorubicin treatment in U2OS cells induced canonical NF-κB activity as evidenced by increased nuclear accumulation of phosphorylated p65 at serine 536 and increased DNA–binding activity. Co-treatment with a small molecule IKKβ inhibitor, Compound A, abrogated this response. RT–PCR evaluation of anti-apoptotic gene expression revealed that doxorubicin-induced transcription of cIAP2 was inhibited by Compound A, while doxorubicin-induced repression of other anti-apoptotic genes was unaffected by Compound A or siRNA to p65. Furthermore, the combination of doxorubicin and canonical NF-κB inhibition with Compound A or siRNA to p65 resulted in decreased cell viability measured by trypan blue staining and MTS assay and increased apoptosis measured by cleaved poly (ADP-ribose) polymerase and cleaved caspase 3 when compared to doxorubicin alone. Our results demonstrate that doxorubicin-induced canonical NF-κB activity associated with phosphorylated p65 is anti-apoptotic in its function and that doxorubicin-induced repression of anti-apoptotic genes occurs independent of p65. Therefore, combination therapies incorporating NF-κB inhibitors together with standard chemotherapies remains a viable method to improve the clinical outcomes in patients with advanced stage malignancies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here