
HIV-1 Tat Co-Operates with IFN-γ and TNF-α to Increase CXCL10 in Human Astrocytes
Author(s) -
Rachel Williams,
Honghong Yao,
Navneet K. Dhillon,
Shilpa Buch
Publication year - 2009
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0005709
Subject(s) - cxcl10 , chemokine , immunology , microglia , astrocyte , cytokine , proinflammatory cytokine , neuroinflammation , tumor necrosis factor alpha , biology , viral encephalitis , gliosis , inflammation , central nervous system , encephalitis , neuroscience , virus
HIV-associated neurological disorders (HAND) are estimated to affect 60% of the HIV infected population. HIV-encephalitis (HIVE), the pathological correlate of the most severe form of HAND is often characterized by glial activation, cytokine/chemokine dysregulation, and neuronal damage and loss. However, the severity of HIVE correlates better with glial activation rather than viral load. One of the characteristic features of HIVE is the increased amount of the neurotoxic chemokine, CXCL10. This chemokine can be released from astroglia activated with the pro-inflammatory cytokines IFN-γ and TNF-α, in conjunction with HIV-1 Tat, all of which are elevated in HIVE. In an effort to understand the pathogenesis of HAND, this study was aimed at exploring the regulation of CXCL10 by cellular and viral factors during astrocyte activation. Specifically, the data herein demonstrate that the combined actions of HIV-1 Tat and the pro-inflammatory cytokines, IFN-γ and TNF-α, result in the induction of CXCL10 at both the RNA and protein level. Furthermore, CXCL10 induction was found to be regulated transcriptionally by the activation of the p38, Jnk, and Akt signaling pathways and their downstream transcription factors, NF-κB and STAT-1α. Since CXCL10 levels are linked to disease severity, understanding its regulation could aid in the development of therapeutic intervention strategies for HAND.