z-logo
open-access-imgOpen Access
Two-stage lot quality assurance sampling framework for monitoring and evaluation of neglected tropical diseases, allowing for imperfect diagnostics and spatial heterogeneity
Author(s) -
Adama Kazienga,
Luc E. Coffeng,
Sake J. de Vlas,
Bruno Levecke
Publication year - 2022
Publication title -
plos neglected tropical diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.99
H-Index - 135
eISSN - 1935-2735
pISSN - 1935-2727
DOI - 10.1371/journal.pntd.0010353
Subject(s) - neglected tropical diseases , lot quality assurance sampling , quality assurance , sampling (signal processing) , sample size determination , cluster (spacecraft) , computer science , statistics , medicine , multivariate statistics , sample (material) , scale (ratio) , spatial heterogeneity , population , cluster sampling , data mining , environmental health , pathology , mathematics , geography , cartography , public health , biology , filter (signal processing) , chemistry , external quality assessment , chromatography , computer vision , programming language , ecology
Background Monitoring and evaluation (M&E) is a key component of large-scale neglected tropical diseases (NTD) control programs. Diagnostic tests deployed in these M&E surveys are often imperfect, and it remains unclear how this affects the population-based program decision-making. Methodology We developed a 2-stage lot quality assurance sampling (LQAS) framework for decision-making that allows for both imperfect diagnostics and spatial heterogeneity of infections. We applied the framework to M&E of soil-transmitted helminth control programs as a case study. For this, we explored the impact of the diagnostic performance (sensitivity and specificity), spatial heterogeneity (intra-cluster correlation), and survey design on program decision-making around the prevalence decisions thresholds recommended by WHO (2%, 10%, 20% and 50%) and the associated total survey costs. Principal findings The survey design currently recommended by WHO (5 clusters and 50 subjects per cluster) may lead to incorrect program decisions around the 2% and 10% prevalence thresholds, even when perfect diagnostic tests are deployed. To reduce the risk of incorrect decisions around the 2% prevalence threshold, including more clusters (≥10) and deploying highly specific diagnostic methods (≥98%) are the most-cost saving strategies when spatial heterogeneity is moderate-to-high (intra-cluster correlation >0.017). The higher cost and lower throughput of improved diagnostic tests are compensated by lower required sample sizes, though only when the cost per test is <6.50 US $ and sample throughput is ≥3 per hour. Conclusion/Significance Our framework provides a means to assess and update M&E guidelines and guide product development choices for NTD. Using soil-transmitted helminths as a case study, we show that current M&E guidelines may severely fall short, particularly in low-endemic and post-control settings. Furthermore, specificity rather than sensitivity is a critical parameter to consider. When the geographical distribution of an NTD within a district is highly heterogeneous, sampling more clusters (≥10) may be required.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom