z-logo
open-access-imgOpen Access
Genome-scale metabolic models highlight stage-specific differences in essential metabolic pathways in Trypanosoma cruzi
Author(s) -
Isabel Souza Shiratsubaki,
Xin Fang,
Rodolpho Ornitz Oliveira Souza,
Jaehyung Kim,
Ariel Mariano Silber,
Jair L. Siqueira-Neto
Publication year - 2020
Publication title -
plos neglected tropical diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.99
H-Index - 135
eISSN - 1935-2735
pISSN - 1935-2727
DOI - 10.1371/journal.pntd.0008728
Subject(s) - chagas disease , biology , trypanosoma cruzi , benznidazole , nifurtimox , in silico , metabolic pathway , metabolic network , neglected tropical diseases , nasonia vitripennis , computational biology , genetics , gene , disease , immunology , medicine , parasite hosting , pathology , world wide web , computer science , parasitoid , pteromalidae , host (biology)
Chagas disease is a neglected tropical disease and a leading cause of heart failure in Latin America caused by a protozoan called Trypanosoma cruzi . This parasite presents a complex multi-stage life cycle. Anti-Chagas drugs currently available are limited to benznidazole and nifurtimox, both with severe side effects. Thus, there is a need for alternative and more efficient drugs. Genome-scale metabolic models (GEMs) can accurately predict metabolic capabilities and aid in drug discovery in metabolic genes. This work developed an extended GEM, hereafter referred to as iIS312, of the published and validated T . cruzi core metabolism model. From iIS312, we then built three stage-specific models through transcriptomics data integration, and showed that epimastigotes present the most active metabolism among the stages (see S1 – S4 GEMs). Stage-specific models predicted significant metabolic differences among stages, including variations in flux distribution in core metabolism. Moreover, the gene essentiality predictions suggest potential drug targets, among which some have been previously proven lethal, including glutamate dehydrogenase, glucokinase and hexokinase. To validate the models, we measured the activity of enzymes in the core metabolism of the parasite at different stages, and showed the results were consistent with model predictions. Our results represent a potential step forward towards the improvement of Chagas disease treatment. To our knowledge, these stage-specific models are the first GEMs built for the stages Amastigote and Trypomastigote. This work is also the first to present an in silico GEM comparison among different stages in the T . cruzi life cycle.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here