z-logo
open-access-imgOpen Access
Cross-serotypically conserved epitope recommendations for a universal T cell-based dengue vaccine
Author(s) -
Syed Faraz Ahmed,
Ahmed Abdul Quadeer,
John P. Barton,
Matthew R. McKay
Publication year - 2020
Publication title -
plos neglected tropical diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.99
H-Index - 135
eISSN - 1935-2735
pISSN - 1935-2727
DOI - 10.1371/journal.pntd.0008676
Subject(s) - epitope , virology , dengue virus , biology , serotype , dengue vaccine , dengue fever , human leukocyte antigen , conserved sequence , antigen , immunology , genetics , peptide sequence , gene
Dengue virus (DENV)-associated disease is a growing threat to public health across the globe. Co-circulating as four different serotypes, DENV poses a unique challenge for vaccine design as immunity to one serotype predisposes a person to severe and potentially lethal disease upon infection from other serotypes. Recent experimental studies suggest that an effective vaccine against DENV should elicit a strong T cell response against all serotypes, which could be achieved by directing T cell responses toward cross-serotypically conserved epitopes while avoiding serotype-specific ones. Here, we used experimentally-determined DENV T cell epitopes and patient-derived DENV sequences to assess the cross-serotypic variability of the epitopes. We reveal a distinct near-binary pattern of epitope conservation across serotypes for a large number of DENV epitopes. Based on the conservation profile, we identify a set of 55 epitopes that are highly conserved in at least 3 serotypes. Most of the highly conserved epitopes lie in functionally important regions of DENV non-structural proteins. By considering the global distribution of human leukocyte antigen (HLA) alleles associated with these DENV epitopes, we identify a potentially robust subset of HLA class I and class II restricted epitopes that can serve as targets for a universal T cell-based vaccine against DENV while covering ~99% of the global population.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here