
In vitro and in vivo growth inhibitory activities of cryptolepine hydrate against several Babesia species and Theileria equi
Author(s) -
Gaber ElSaber Batiha,
Amany Magdy Beshbishy,
Luay Alkazmi,
Eman Hassan Nadwa,
Eman K. Rashwan,
Naoki Yokoyama
Publication year - 2020
Publication title -
plos neglected tropical diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.99
H-Index - 135
eISSN - 1935-2735
pISSN - 1935-2727
DOI - 10.1371/journal.pntd.0008489
Subject(s) - in vivo , babesia bigemina , biology , theileria , babesia , in vitro , pharmacology , babesia bovis , ec50 , ic50 , virology , microbiology and biotechnology , biochemistry , parasite hosting , world wide web , computer science
Piroplasmosis treatment has been based on the use of imidocarb dipropionate or diminazene aceturate (DA), however, their toxic effects. Therefore, the discovery of new drug molecules and targets is urgently needed. Cryptolepine (CRY) is a pharmacologically active plant alkaloid; it has significant potential as an antiprotozoal and antibacterial under different in vitro and in vivo conditions. The fluorescence assay was used for evaluating the inhibitory effect of CRY on four Babesia species and Theileria equi in vitro , and on the multiplication of B . microti in mice. The toxicity assay was evaluated on Madin–Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3), and human foreskin fibroblast (HFF) cell lines. The half-maximal inhibitory concentration (IC 50 ) values of CRY on Babesia bovis , B . bigemina , B . divergens , B . caballi , and T . equi were 1740 ± 0.377, 1400 ± 0.6, 790 ± 0.32, 600 ± 0.53, and 730 ± 0.025 nM, respectively. The toxicity assay on MDBK, NIH/3T3, and HFF cell lines showed that CRY affected the viability of cells with a half-maximum effective concentration (EC 50 ) of 86.67 ± 4.43, 95.29 ± 2.7, and higher than 100 μM, respectively. In mice experiments, CRY at a concentration of 5 mg/kg effectively inhibited the growth of B . microti , while CRY–atovaquone (AQ) and CRY–DA combinations showed higher chemotherapeutic effects than CRY alone. Our results showed that CRY has the potential to be an alternative remedy for treating piroplasmosis.