Open Access
Assessment of control strategies against Clonorchis sinensis infection based on a multi-group dynamic transmission model
Author(s) -
Xiaohong Huang,
MenBao Qian,
Guanghu Zhu,
Yue-Yi Fang,
Yuantao Hao,
YingSi Lai
Publication year - 2020
Publication title -
plos neglected tropical diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.99
H-Index - 135
eISSN - 1935-2735
pISSN - 1935-2727
DOI - 10.1371/journal.pntd.0008152
Subject(s) - clonorchiasis , psychological intervention , population , environmental health , transmission (telecommunications) , clonorchis sinensis , medicine , sustainability , biology , immunology , ecology , computer science , telecommunications , psychiatry , helminths
Clonorchiasis is one of the most important food-borne trematodiases affecting millions of people. Strategies were recommended by different organizations and control programmes were implemented but mostly in short-time periods. It’s important to assess the long-term benefits and sustainability of possible control strategies on morbidity control of the disease. We developed a multi-group transmission model to describe the dynamics of C . sinensis transmission among different groups of people with different raw-fish-consumption behaviors, based on which, a full model with interventions was proposed and three common control measures (i.e., preventive chemotherapy, information, education, and communication (IEC) and environmental modification) and their possible combinations were considered. Under a typical setting of C . sinensis transmission, we simulated interventions according to different strategies and with a series of values of intervention parameters. We found that combinations of measures were much beneficial than those singly applied; higher coverages of measures had better effects; and strategies targeted on whole population performed better than that on at-risk population with raw-fish-consumption behaviors. The strategy recommended by the government of Guangdong Province, China shows good and sustainable effects, under which, the infection control (with human prevalence <5%) could be achieved within 7.84 years (95% CI: 5.78–12.16 years) in our study setting (with original observed prevalence 33.67%). Several sustainable strategies were provided, which could lead to infection control within 10 years. This study makes the effort to quantitatively assess the long-term effects of possible control strategies against C . sinensis infection under a typical transmission setting, with application of a multi-group dynamic transmission model. The proposed model is easily facilitated with other transmission settings and the simulation outputs provide useful information to support the decision-making of control strategies on clonorchiasis.