
Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach
Author(s) -
Adriana Zubieta-Zavala,
Guillermo Salinas-Escudero,
Adrian Ramírez-Chávez,
Luis García-Valladares,
Malaquı́as López-Cervantes,
Juan Guillermo López Yescas,
Luis Durán-Arenas
Publication year - 2016
Publication title -
plos neglected tropical diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.99
H-Index - 135
eISSN - 1935-2735
pISSN - 1935-2727
DOI - 10.1371/journal.pntd.0004897
Subject(s) - activity based costing , medicine , health care , dengue fever , medical emergency , operations management , business , economic growth , economics , accounting , immunology
The increasing burden of dengue fever (DF) in the Americas, and the current epidemic in previously unaffected countries, generate major costs for national healthcare systems. There is a need to quantify the average cost per DF case. In Mexico, few data are available on costs, despite DF being endemic in some areas. Extrapolations from studies in other countries may prove unreliable and are complicated by the two main Mexican healthcare systems (the Secretariat of Health [SS] and the Mexican Social Security Institute [IMSS]). The present study aimed to generate specific average DF cost-per-case data for Mexico using a micro-costing approach. Methods Expected medical costs associated with an ideal management protocol for DF (denoted ´ideal costs´) were compared with the medical costs of current treatment practice (denoted ´real costs´) in 2012. Real cost data were derived from chart review of DF cases and interviews with patients and key personnel from 64 selected hospitals and ambulatory care units in 16 states for IMSS and SS. In both institutions, ideal and real costs were estimated using the program, actions, activities, tasks, inputs (PAATI) approach, a micro-costing technique developed by us. Results Clinical pathways were obtained for 1,168 patients following review of 1,293 charts. Ideal and real costs for SS patients were US$165.72 and US$32.60, respectively, in the outpatient setting, and US$587.77 and US$490.93, respectively, in the hospital setting. For IMSS patients, ideal and real costs were US$337.50 and US$92.03, respectively, in the outpatient setting, and US$2,042.54 and US$1,644.69 in the hospital setting. Conclusions The markedly higher ideal versus real costs may indicate deficiencies in the actual care of patients with DF. It may be necessary to derive better estimates with micro-costing techniques and compare the ideal protocol with current practice when calculating these costs, as patients do not always receive optimal care.