z-logo
open-access-imgOpen Access
Post-insemination selection dominates pre-insemination selection in driving rapid evolution of male competitive ability
Author(s) -
Katja R Kasimatis,
Megan Moerdyk-Schauwecker,
Ruben Lancaster,
Alexander Smith,
John H. Willis,
Patrick C. Phillips
Publication year - 2022
Publication title -
plos genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.587
H-Index - 233
eISSN - 1553-7404
pISSN - 1553-7390
DOI - 10.1371/journal.pgen.1010063
Subject(s) - insemination , biology , sexual selection , selection (genetic algorithm) , reproductive success , sperm competition , experimental evolution , evolutionary biology , population , sperm , genetics , demography , artificial intelligence , sociology , computer science , gene
Sexual reproduction is a complex process that contributes to differences between the sexes and divergence between species. From a male’s perspective, sexual selection can optimize reproductive success by acting on the variance in mating success (pre-insemination selection) as well as the variance in fertilization success (post-insemination selection). The balance between pre- and post-insemination selection has not yet been investigated using a strong hypothesis-testing framework that directly quantifies the effects of post-insemination selection on the evolution of reproductive success. Here we use experimental evolution of a uniquely engineered genetic system that allows sperm production to be turned off and on in obligate male-female populations of Caenorhabditis elegans . We show that enhanced post-insemination competition increases the efficacy of selection and surpasses pre-insemination sexual selection in driving a polygenic response in male reproductive success. We find that after 10 selective events occurring over 30 generations post-insemination selection increased male reproductive success by an average of 5- to 7-fold. Contrary to expectation, enhanced pre-insemination competition hindered selection and slowed the rate of evolution. Furthermore, we found that post-insemination selection resulted in a strong polygenic response at the whole-genome level. Our results demonstrate that post-insemination sexual selection plays a critical role in the rapid optimization of male reproductive fitness. Therefore, explicit consideration should be given to post-insemination dynamics when considering the population effects of sexual selection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here