
Identification of potential functional variants and genes at 18q21.1 associated with the carcinogenesis of colorectal cancer
Author(s) -
Xiaoqing Cheng,
Fenglan Zhang,
Jingwen Gong,
Yige Li,
Dan Zhou,
Jing Wang,
Eu Gene Vong,
Ying Yuan,
Maode Lai,
Dandan Zhang
Publication year - 2022
Publication title -
plos genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.587
H-Index - 233
eISSN - 1553-7404
pISSN - 1553-7390
DOI - 10.1371/journal.pgen.1010050
Subject(s) - biology , genome wide association study , single nucleotide polymorphism , genetics , functional genomics , colorectal cancer , snp , genetic association , computational biology , enhancer , cancer , linkage disequilibrium , gene , genomics , genome , gene expression , genotype
Genome-wide association studies (GWAS) have identified more than 160 susceptibility loci for colorectal cancer (CRC). The effects of these variants, particularly their mechanisms, however, remain unclear. In this study, a comprehensive functional annotation of CRC-related GWAS signals was firstly conducted to identify the potential causal variants. We found that the SNP rs7229639 in intron 3 of SMAD7 at 18q21.1 might serve as a putative functional variant in CRC. The SNP rs7229639 is located in a region with evidence of regulatory potential. Dual-luciferase reporter assays revealed that three other SNPs (rs77544449, rs60385309 and rs72917785), in strong linkage disequilibrium (LD) with rs7229639, exhibited allele-specific enhancer activity, of which one of the target genes may conceivably be LIPG , as suggested by eQTL association data and Hi-C data. We also verified that LIPG promoted malignancy of CRC cells in vitro, with supporting clinical data indicating that LIPG is upregulated and correlated with a poor prognosis in CRC. Finally, pitavastatin was observed to exhibit an anti-CRC activity and modest inhibition of LIPG mRNA levels. Collectively, our data suggest that these functional variants at 18q21.1 are involved in the pathogenesis of CRC by modulating enhancer activity, and possibly LIPG expression, thus indicating a promising therapeutic target for CRC. The results of functional annotation in our investigation could also serve as an inventory for CRC susceptibility SNPs and offer guides for post-GWAS downstream functional studies.