
Copy number signature analysis tool and its application in prostate cancer reveals distinct mutational processes and clinical outcomes
Author(s) -
Shixiang Wang,
Huimin Li,
Mei Song,
Ziyu Tao,
Tao Wu,
Zaoke He,
Xiangyu Zhao,
Kai Wu,
Xue Song Liu
Publication year - 2021
Publication title -
plos genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.587
H-Index - 233
eISSN - 1553-7404
pISSN - 1553-7390
DOI - 10.1371/journal.pgen.1009557
Subject(s) - biology , copy number variation , computational biology , copy number analysis , genome , prostate cancer , genetics , cancer , bioinformatics , gene
Genome alteration signatures reflect recurring patterns caused by distinct endogenous or exogenous mutational events during the evolution of cancer. Signatures of single base substitution (SBS) have been extensively studied in different types of cancer. Copy number alterations are important drivers for the progression of multiple cancer. However, practical tools for studying the signatures of copy number alterations are still lacking. Here, a user-friendly open source bioinformatics tool “sigminer” has been constructed for copy number signature extraction, analysis and visualization. This tool has been applied in prostate cancer (PC), which is particularly driven by complex genome alterations. Five copy number signatures are identified from human PC genome with this tool. The underlying mutational processes for each copy number signature have been illustrated. Sample clustering based on copy number signature exposure reveals considerable heterogeneity of PC, and copy number signatures show improved PC clinical outcome association when compared with SBS signatures. This copy number signature analysis in PC provides distinct insight into the etiology of PC, and potential biomarkers for PC stratification and prognosis.