
Enhancers with cooperative Notch binding sites are more resistant to regulation by the Hairless co-repressor
Author(s) -
Yi Kuang,
Anna Pyo,
Natanel Eafergan,
Brittany Cain,
Lisa M. Gutzwiller,
Ofri Axelrod,
Ellen K. Gagliani,
Matthew T. Weirauch,
Raphael Kopan,
Rhett A. Kovall,
David Sprinzak,
Brian Gebelein
Publication year - 2021
Publication title -
plos genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.587
H-Index - 233
eISSN - 1553-7404
pISSN - 1553-7390
DOI - 10.1371/journal.pgen.1009039
Subject(s) - hairless , enhancer , repressor , transcription factor , biology , notch signaling pathway , microbiology and biotechnology , transcription (linguistics) , psychological repression , gene , genetics , gene expression , linguistics , philosophy
Notch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the C bf/ S u(H)/ L ag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called S u(H) p aired s ites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how synthetic enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo . Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation.