
Smc5/6 Is a Telomere-Associated Complex that Regulates Sir4 Binding and TPE
Author(s) -
Sarah MoradiFard,
Jessica Sarthi,
Mireille Tittel-Elmer,
Maxime Lalonde,
Emilio Cusanelli,
Pascal Chartrand,
Jennifer A. Cobb
Publication year - 2016
Publication title -
plos genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.587
H-Index - 233
eISSN - 1553-7404
pISSN - 1553-7390
DOI - 10.1371/journal.pgen.1006268
Subject(s) - telomere , biology , microbiology and biotechnology , cohesin , telomere binding protein , gene silencing , chromosome segregation , mutant , genetics , chromatin , transcription factor , dna binding protein , dna , chromosome , gene
SMC proteins constitute the core members of the Smc5/6, cohesin and condensin complexes. We demonstrate that Smc5/6 is present at telomeres throughout the cell cycle and its association with chromosome ends is dependent on Nse3, a subcomponent of the complex. Cells harboring a temperature sensitive mutant, nse3 -1, are defective in Smc5/6 localization to telomeres and have slightly shorter telomeres. Nse3 interacts physically and genetically with two Rap1-binding factors, Rif2 and Sir4. Reduction in telomere-associated Smc5/6 leads to defects in telomere clustering, dispersion of the silencing factor, Sir4, and a loss in transcriptional repression for sub-telomeric genes and non-coding telomeric repeat-containing RNA (TERRA). SIR4 recovery at telomeres is reduced in cells lacking Smc5/6 functionality and vice versa. However, nse3 -1/ sir4 Δ double mutants show additive defects for telomere shortening and TPE indicating the contribution of Smc5/6 to telomere homeostasis is only in partial overlap with SIR factor silencing. These findings support a role for Smc5/6 in telomere maintenance that is separate from its canonical role(s) in HR-mediated events during replication and telomere elongation.