
RNA-Processing Protein TDP-43 Regulates FOXO-Dependent Protein Quality Control in Stress Response
Author(s) -
Tao Zhang,
Gerard Baldie,
Goran Periz,
Jiou Wang
Publication year - 2014
Publication title -
plos genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.587
H-Index - 233
eISSN - 1553-7404
pISSN - 1553-7390
DOI - 10.1371/journal.pgen.1004693
Subject(s) - biology , rna binding protein , stress granule , microbiology and biotechnology , transcription factor , rna , tardbp , genetics , messenger rna , gene , translation (biology) , sod1 , mutant
Protein homeostasis is critical for cell survival and functions during stress and is regulated at both RNA and protein levels. However, how the cell integrates RNA-processing programs with post-translational protein quality control systems is unknown. Transactive response DNA-binding protein (TARDBP/TDP-43) is an RNA-processing protein that is involved in the pathogenesis of major neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we report a conserved role for TDP-43, from C. elegans to mammals, in the regulation of protein clearance via activation of FOXO transcription factors. In response to proteotoxic insults, TDP-43 redistributes from the nucleus to the cytoplasm, promoting nuclear translocation of FOXOs and relieving an inhibition of FOXO activity in the nucleus. The interaction between TDP-43 and the FOXO pathway in mammalian cells is mediated by their competitive binding to 14-3-3 proteins. Consistent with FOXO-dependent protein quality control, TDP-43 regulates the levels of misfolded proteins. Therefore, TDP-43 mediates stress responses and couples the regulation of RNA metabolism and protein quality control in a FOXO-dependent manner. The results suggest that compromising the function of TDP-43 in regulating protein homeostasis may contribute to the pathogenesis of related neurodegenerative diseases.