
Unbiased Gene Expression Analysis Implicates the huntingtin Polyglutamine Tract in Extra-mitochondrial Energy Metabolism
Author(s) -
Jong Min Lee,
Elena Ivanova,
Ihn Sik Seong,
Tanya Cashorali,
Isaac S. Kohane,
James F. Gusella,
Marcy E. MacDonald
Publication year - 2007
Publication title -
plos genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.587
H-Index - 233
eISSN - 1553-7404
pISSN - 1553-7390
DOI - 10.1371/journal.pgen.0030135
Subject(s) - huntingtin , polyglutamine tract , biology , mitochondrion , huntingtin protein , huntington's disease , mutant , trinucleotide repeat expansion , microbiology and biotechnology , glutamine , genetics , mutation , gene , allele , amino acid , medicine , disease
The Huntington's disease (HD) CAG repeat, encoding a polymorphic glutamine tract in huntingtin, is inversely correlated with cellular energy level, with alleles over ∼37 repeats leading to the loss of striatal neurons. This early HD neuronal specificity can be modeled by respiratory chain inhibitor 3-nitropropionic acid (3-NP) and, like 3-NP, mutant huntingtin has been proposed to directly influence the mitochondrion, via interaction or decreased PGC-1α expression. We have tested this hypothesis by comparing the gene expression changes due to mutant huntingtin accurately expressed in STHdh Q111/Q111 cells with the changes produced by 3-NP treatment of wild-type striatal cells. In general, the HD mutation did not mimic 3-NP, although both produced a state of energy collapse that was mildly alleviated by the PGC-1α-coregulated nuclear respiratory factor 1 (Nrf-1). Moreover, unlike 3-NP, the HD CAG repeat did not significantly alter mitochondrial pathways in STHdh Q111/Q111 cells, despite decreased Ppargc1a expression. Instead, the HD mutation enriched for processes linked to huntingtin normal function and Nf-κB signaling. Thus, rather than a direct impact on the mitochondrion, the polyglutamine tract may modulate some aspect of huntingtin's activity in extra-mitochondrial energy metabolism. Elucidation of this HD CAG-dependent pathway would spur efforts to achieve energy-based therapeutics in HD.