
A machine learning model trained on a high-throughput antibacterial screen increases the hit rate of drug discovery
Author(s) -
Aura Rahman,
Chengyou Liu,
Hunter Sturm,
Andrew M. Hogan,
Rebecca L. Davis,
Pingzhao Hu,
Silvia T. Cardona
Publication year - 2022
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1010613
Subject(s) - antibacterial activity , virtual screening , drug discovery , minimum inhibitory concentration , machine learning , antibiotics , computer science , bacteria , artificial intelligence , biology , bioinformatics , microbiology and biotechnology , genetics