z-logo
open-access-imgOpen Access
HAYSTAC: A Bayesian framework for robust and rapid species identification in high-throughput sequencing data
Author(s) -
Evangelos A. Dimopoulos,
Alberto Carmagnini,
Irina Velsko,
Christina Warinner,
Greger Larson,
Laurent Frantz,
Evan K. Irving-Pease
Publication year - 2022
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1010493
Subject(s) - identification (biology) , computational biology , bayesian probability , dna sequencing , throughput , biology , species identification , computer science , evolutionary biology , genetics , artificial intelligence , ecology , gene , telecommunications , wireless

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here