z-logo
open-access-imgOpen Access
SCRaPL: A Bayesian hierarchical framework for detecting technical associates in single cell multiomics data
Author(s) -
Christos Maniatis,
Catalina A. Vallejos,
Guido Sanguinetti
Publication year - 2022
Publication title -
plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1010163
Subject(s) - bayesian probability , computer science , robustness (evolution) , false positive paradox , computational biology , statistical power , data mining , correlative , correlation , systems biology , bioinformatics , machine learning , artificial intelligence , biology , statistics , mathematics , gene , linguistics , philosophy , geometry , biochemistry

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom