z-logo
open-access-imgOpen Access
The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function
Author(s) -
Federica Battistini,
Pablo D. Dans,
Montserrat Terrazas,
Chiara Lara Castellazzi,
Guillem Portella,
Mireia Labrador,
Núria Villegas,
Isabelle Brun-Heath,
Carlos González,
Modesto Orozco
Publication year - 2021
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1009547
Subject(s) - 5 methylcytosine , dna methylation , cytosine , epigenetics , chromatin , dna , 5 hydroxymethylcytosine , nucleosome , biophysics , histone , biology , methylation , psychological repression , chemistry , genetics , microbiology and biotechnology , gene , gene expression
We present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties similar to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains (MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here