z-logo
open-access-imgOpen Access
Neighbor-enhanced diffusivity in dense, cohesive cell populations
Author(s) -
Hyun Gyu Lee,
Kyoung J. Lee
Publication year - 2021
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1009447
Subject(s) - crawling , population , morphogenesis , cell , mass diffusivity , cell migration , biophysics , biological system , biology , thermal diffusivity , physics , anatomy , genetics , demography , quantum mechanics , sociology , gene
The dispersal or mixing of cells within cellular tissue is a crucial property for diverse biological processes, ranging from morphogenesis, immune action, to tumor metastasis. With the phenomenon of ‘contact inhibition of locomotion,’ it is puzzling how cells achieve such processes within a densely packed cohesive population. Here we demonstrate that a proper degree of cell-cell adhesiveness can, intriguingly, enhance the super-diffusive nature of individual cells. We systematically characterize the migration trajectories of crawling MDA-MB-231 cell lines, while they are in several different clustering modes, including freely crawling singles, cohesive doublets of two cells, quadruplets, and confluent population on two-dimensional substrate. Following data analysis and computer simulation of a simple cellular Potts model, which faithfully recapitulated all key experimental observations such as enhanced diffusivity as well as periodic rotation of cell-doublets and cell-quadruplets with mixing events, we found that proper combination of active self-propelling force and cell-cell adhesion is sufficient for generating the observed phenomena. Additionally, we found that tuning parameters for these two factors covers a variety of different collective dynamic states.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here