z-logo
open-access-imgOpen Access
Genetic dissection of complex traits using hierarchical biological knowledge
Author(s) -
Hidenori Tanaka,
Jason F. Kreisberg,
Trey Ideker
Publication year - 2021
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1009373
Subject(s) - biology , phenotype , genetic variation , genetics , computational biology , evolutionary biology , population , gene , demography , sociology
Despite the growing constellation of genetic loci linked to common traits, these loci have yet to account for most heritable variation, and most act through poorly understood mechanisms. Recent machine learning (ML) systems have used hierarchical biological knowledge to associate genetic mutations with phenotypic outcomes, yielding substantial predictive power and mechanistic insight. Here, we use an ontology-guided ML system to map single nucleotide variants (SNVs) focusing on 6 classic phenotypic traits in natural yeast populations. The 29 identified loci are largely novel and account for ~17% of the phenotypic variance, versus <3% for standard genetic analysis. Representative results show that sensitivity to hydroxyurea is linked to SNVs in two alternative purine biosynthesis pathways, and that sensitivity to copper arises through failure to detoxify reactive oxygen species in fatty acid metabolism. This work demonstrates a knowledge-based approach to amplifying and interpreting signals in population genetic studies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here