
BEEM-Static: Accurate inference of ecological interactions from cross-sectional microbiome data
Author(s) -
Chenhao Li,
Tamar V. Av-Shalom,
Jun Wei Gerald Tan,
Junmei Samantha Kwah,
Kern Rei Chng,
Niranjan Nagarajan
Publication year - 2021
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1009343
Subject(s) - microbiome , inference , robustness (evolution) , computer science , benchmarking , scalability , statistical inference , ecology , relative species abundance , machine learning , abundance (ecology) , computational biology , data mining , data science , artificial intelligence , biology , bioinformatics , statistics , mathematics , marketing , gene , biochemistry , database , business
The structure and function of diverse microbial communities is underpinned by ecological interactions that remain uncharacterized. With rapid adoption of next-generation sequencing for studying microbiomes, data-driven inference of microbial interactions based on abundance correlations is widely used, but with the drawback that ecological interpretations may not be possible. Leveraging cross-sectional microbiome datasets for unravelling ecological structure in a scalable manner thus remains an open problem. We present an expectation-maximization algorithm (BEEM-Static) that can be applied to cross-sectional datasets to infer interaction networks based on an ecological model (generalized Lotka-Volterra). The method exhibits robustness to violations in model assumptions by using statistical filters to identify and remove corresponding samples. Benchmarking against 10 state-of-the-art correlation based methods showed that BEEM-Static can infer presence and directionality of ecological interactions even with relative abundance data (AUC-ROC>0.85), a task that other methods struggle with (AUC-ROC<0.63). In addition, BEEM-Static can tolerate a high fraction of samples (up to 40%) being not at steady state or coming from an alternate model. Applying BEEM-Static to a large public dataset of human gut microbiomes (n = 4,617) identified multiple stable equilibria that better reflect ecological enterotypes with distinct carrying capacities and interactions for key species. Conclusion BEEM-Static provides new opportunities for mining ecologically interpretable interactions and systems insights from the growing corpus of microbiome data.