
Bridging cell-scale simulations and radiologic images to explain short-time intratumoral oxygen fluctuations
Author(s) -
Jessica Kingsley,
James Costello,
Natarajan Raghunand,
Katarzyna A. Rejniak
Publication year - 2021
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1009206
Subject(s) - bridging (networking) , scale (ratio) , computer science , statistical physics , artificial intelligence , computational biology , biology , physics , quantum mechanics , computer network
Radiologic images provide a way to monitor tumor development and its response to therapies in a longitudinal and minimally invasive fashion. However, they operate on a macroscopic scale (average value per voxel) and are not able to capture microscopic scale (cell-level) phenomena. Nevertheless, to examine the causes of frequent fast fluctuations in tissue oxygenation, models simulating individual cells’ behavior are needed. Here, we provide a link between the average data values recorded for radiologic images and the cellular and vascular architecture of the corresponding tissues. Using hybrid agent-based modeling, we generate a set of tissue morphologies capable of reproducing oxygenation levels observed in radiologic images. We then use these in silico tissues to investigate whether oxygen fluctuations can be explained by changes in vascular oxygen supply or by modulations in cellular oxygen absorption. Our studies show that intravascular changes in oxygen supply reproduce the observed fluctuations in tissue oxygenation in all considered regions of interest. However, larger-magnitude fluctuations cannot be recreated by modifications in cellular absorption of oxygen in a biologically feasible manner. Additionally, we develop a procedure to identify plausible tissue morphologies for a given temporal series of average data from radiology images. In future applications, this approach can be used to generate a set of tissues comparable with radiology images and to simulate tumor responses to various anti-cancer treatments at the tissue-scale level.