z-logo
open-access-imgOpen Access
Tinnitus-like “hallucinations” elicited by sensory deprivation in an entropy maximization recurrent neural network
Author(s) -
Aviv Dotan,
Oren Shriki
Publication year - 2021
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1008664
Subject(s) - tinnitus , sensory system , neuroscience , psychology , sensory deprivation , dorsal cochlear nucleus , neuroplasticity , hearing loss , audiology , medicine , cochlear nucleus , nucleus
Sensory deprivation has long been known to cause hallucinations or “phantom” sensations, the most common of which is tinnitus induced by hearing loss, affecting 10–20% of the population. An observable hearing loss, causing auditory sensory deprivation over a band of frequencies, is present in over 90% of people with tinnitus. Existing plasticity-based computational models for tinnitus are usually driven by homeostatic mechanisms, modeled to fit phenomenological findings. Here, we use an objective-driven learning algorithm to model an early auditory processing neuronal network, e.g., in the dorsal cochlear nucleus. The learning algorithm maximizes the network’s output entropy by learning the feed-forward and recurrent interactions in the model. We show that the connectivity patterns and responses learned by the model display several hallmarks of early auditory neuronal networks. We further demonstrate that attenuation of peripheral inputs drives the recurrent network towards its critical point and transition into a tinnitus-like state. In this state, the network activity resembles responses to genuine inputs even in the absence of external stimulation, namely, it “hallucinates” auditory responses. These findings demonstrate how objective-driven plasticity mechanisms that normally act to optimize the network’s input representation can also elicit pathologies such as tinnitus as a result of sensory deprivation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here