z-logo
open-access-imgOpen Access
Functional parcellation of mouse visual cortex using statistical techniques reveals response-dependent clustering of cortical processing areas
Author(s) -
Mari Ganesh Kumar,
Ming Hu,
Aadhirai Ramanujan,
Mriganka Sur,
Hema A. Murthy
Publication year - 2021
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1008548
Subject(s) - retinotopy , visual cortex , stimulus (psychology) , neuroscience , pattern recognition (psychology) , artificial intelligence , visual processing , cluster analysis , visual field , computer science , visual perception , psychology , perception , cognitive psychology
The visual cortex of the mouse brain can be divided into ten or more areas that each contain complete or partial retinotopic maps of the contralateral visual field. It is generally assumed that these areas represent discrete processing regions. In contrast to the conventional input-output characterizations of neuronal responses to standard visual stimuli, here we asked whether six of the core visual areas have responses that are functionally distinct from each other for a given visual stimulus set, by applying machine learning techniques to distinguish the areas based on their activity patterns. Visual areas defined by retinotopic mapping were examined using supervised classifiers applied to responses elicited by a range of stimuli. Using two distinct datasets obtained using wide-field and two-photon imaging, we show that the area labels predicted by the classifiers were highly consistent with the labels obtained using retinotopy. Furthermore, the classifiers were able to model the boundaries of visual areas using resting state cortical responses obtained without any overt stimulus, in both datasets. With the wide-field dataset, clustering neuronal responses using a constrained semi-supervised classifier showed graceful degradation of accuracy. The results suggest that responses from visual cortical areas can be classified effectively using data-driven models. These responses likely reflect unique circuits within each area that give rise to activity with stronger intra-areal than inter-areal correlations, and their responses to controlled visual stimuli across trials drive higher areal classification accuracy than resting state responses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here