
BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and dynamics
Author(s) -
Romain Amyot,
Holger Flechsig
Publication year - 2020
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1008444
Subject(s) - molecular graphics , software , graphics , visualization , protein data bank (rcsb pdb) , atomic force microscopy , computer science , computer graphics (images) , molecular dynamics , computer graphics , graphical user interface , computational science , biological system , nanotechnology , materials science , chemistry , artificial intelligence , computational chemistry , stereochemistry , programming language , biology
We provide a stand-alone software, the BioAFMviewer, which transforms biomolecular structures into the graphical representation corresponding to the outcome of atomic force microscopy (AFM) experiments. The AFM graphics is obtained by performing simulated scanning over the molecular structure encoded in the corresponding PDB file. A versatile molecular viewer integrates the visualization of PDB structures and control over their orientation, while synchronized simulated scanning with variable spatial resolution and tip-shape geometry produces the corresponding AFM graphics. We demonstrate the applicability of the BioAFMviewer by comparing simulated AFM graphics to high-speed AFM observations of proteins. The software can furthermore process molecular movies of conformational motions, e.g. those obtained from servers which model functional transitions within a protein, and produce the corresponding simulated AFM movie. The BioAFMviewer software provides the platform to employ the plethora of structural and dynamical data of proteins in order to help in the interpretation of biomolecular AFM experiments.