
PhyDOSE: Design of follow-up single-cell sequencing experiments of tumors
Author(s) -
Leah L. Weber,
Nuraini Aguse,
Nicholas Chia,
Mohammed El-Kebir
Publication year - 2020
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1008240
Subject(s) - computational biology , dna sequencing , inference , computer science , myeloid leukemia , single cell sequencing , sequence (biology) , tree (set theory) , probabilistic logic , exome sequencing , biology , genomics , ambiguity , bioinformatics , genome , artificial intelligence , genetics , gene , mutation , mathematics , immunology , mathematical analysis , programming language
The combination of bulk and single-cell DNA sequencing data of the same tumor enables the inference of high-fidelity phylogenies that form the input to many important downstream analyses in cancer genomics. While many studies simultaneously perform bulk and single-cell sequencing, some studies have analyzed initial bulk data to identify which mutations to target in a follow-up single-cell sequencing experiment, thereby decreasing cost. Bulk data provide an additional untapped source of valuable information, composed of candidate phylogenies and associated clonal prevalence. Here, we introduce PhyDOSE, a method that uses this information to strategically optimize the design of follow-up single cell experiments. Underpinning our method is the observation that only a small number of clones uniquely distinguish one candidate tree from all other trees. We incorporate distinguishing features into a probabilistic model that infers the number of cells to sequence so as to confidently reconstruct the phylogeny of the tumor. We validate PhyDOSE using simulations and a retrospective analysis of a leukemia patient, concluding that PhyDOSE’s computed number of cells resolves tree ambiguity even in the presence of typical single-cell sequencing errors. We also conduct a retrospective analysis on an acute myeloid leukemia cohort, demonstrating the potential to achieve similar results with a significant reduction in the number of cells sequenced. In a prospective analysis, we demonstrate the advantage of selecting cells to sequence across multiple biopsies and that only a small number of cells suffice to disambiguate the solution space of trees in a recent lung cancer cohort. In summary, PhyDOSE proposes cost-efficient single-cell sequencing experiments that yield high-fidelity phylogenies, which will improve downstream analyses aimed at deepening our understanding of cancer biology.