z-logo
open-access-imgOpen Access
Unsupervised manifold learning of collective behavior
Author(s) -
Mathew Titus,
George I. Hagstrom,
James R. Watson
Publication year - 2021
Publication title -
plos computational biology/plos computational biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1007811
Subject(s) - collective behavior , computer science , artificial intelligence , statistic , unsupervised learning , complex system , flocking (texture) , machine learning , mathematics , statistics , sociology , anthropology , materials science , composite material
Collective behavior is an emergent property of numerous complex systems, from financial markets to cancer cells to predator-prey ecological systems. Characterizing modes of collective behavior is often done through human observation, training generative models, or other supervised learning techniques. Each of these cases requires knowledge of and a method for characterizing the macro-state(s) of the system. This presents a challenge for studying novel systems where there may be little prior knowledge. Here, we present a new unsupervised method of detecting emergent behavior in complex systems, and discerning between distinct collective behaviors. We require only metrics, d (1) , d (2) , defined on the set of agents, X , which measure agents’ nearness in variables of interest. We apply the method of diffusion maps to the systems ( X , d ( i ) ) to recover efficient embeddings of their interaction networks. Comparing these geometries, we formulate a measure of similarity between two networks, called the map alignment statistic (MAS). A large MAS is evidence that the two networks are codetermined in some fashion, indicating an emergent relationship between the metrics d (1) and d (2) . Additionally, the form of the macro-scale organization is encoded in the covariances among the two sets of diffusion map components. Using these covariances we discern between different modes of collective behavior in a data-driven, unsupervised manner. This method is demonstrated on a synthetic flocking model as well as empirical fish schooling data. We show that our state classification subdivides the known behaviors of the school in a meaningful manner, leading to a finer description of the system’s behavior.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here