z-logo
open-access-imgOpen Access
StanDep: Capturing transcriptomic variability improves context-specific metabolic models
Author(s) -
Chintan Joshi,
SongMin Schinn,
Anne Richelle,
Isaac Shamie,
Eyleen J. O’Rourke,
Nathan E. Lewis
Publication year - 2020
Publication title -
plos computational biology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 2.628
H-Index - 182
eISSN - 1553-7358
pISSN - 1553-734X
DOI - 10.1371/journal.pcbi.1007764
Subject(s) - context (archaeology) , computer science , identification (biology) , thresholding , computational biology , housekeeping gene , heuristic , transcriptome , data mining , artificial intelligence , machine learning , biology , gene , gene expression , genetics , paleontology , botany , image (mathematics)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom