
“Liking” as an early and editable draft of long-run affective value
Author(s) -
Peter Dayan
Publication year - 2022
Publication title -
plos biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.127
H-Index - 271
eISSN - 1545-7885
pISSN - 1544-9173
DOI - 10.1371/journal.pbio.3001476
Subject(s) - value (mathematics) , cognitive psychology , reinforcement learning , through the lens metering , biology , cognitive science , social psychology , artificial intelligence , psychology , computer science , lens (geology) , machine learning , paleontology
Psychological and neural distinctions between the technical concepts of “liking” and “wanting” pose important problems for motivated choice for goods. Why could we “want” something that we do not “like,” or “like” something but be unwilling to exert effort to acquire it? Here, we suggest a framework for answering these questions through the medium of reinforcement learning. We consider “liking” to provide immediate, but preliminary and ultimately cancellable, information about the true, long-run worth of a good. Such initial estimates, viewed through the lens of what is known as potential-based shaping, help solve the temporally complex learning problems faced by animals.