z-logo
open-access-imgOpen Access
Respiration modulates oscillatory neural network activity at rest
Author(s) -
Daniel S. Kluger,
Joachim Groß
Publication year - 2021
Publication title -
plos biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.127
H-Index - 271
eISSN - 1545-7885
pISSN - 1544-9173
DOI - 10.1371/journal.pbio.3001457
Subject(s) - magnetoencephalography , respiration , neuroscience , biology , resting state fmri , control of respiration , breathing , coupling (piping) , beta rhythm , electroencephalography , anatomy , mechanical engineering , engineering
Despite recent advances in understanding how respiration affects neural signalling to influence perception, cognition, and behaviour, it is yet unclear to what extent breathing modulates brain oscillations at rest. We acquired respiration and resting state magnetoencephalography (MEG) data from human participants to investigate if, where, and how respiration cyclically modulates oscillatory amplitudes (2 to 150 Hz). Using measures of phase–amplitude coupling, we show respiration-modulated brain oscillations (RMBOs) across all major frequency bands. Sources of these modulations spanned a widespread network of cortical and subcortical brain areas with distinct spectrotemporal modulation profiles. Globally, delta and gamma band modulations varied with distance to the head centre, with stronger modulations at distal (versus central) cortical sites. Overall, we provide the first comprehensive mapping of RMBOs across the entire brain, highlighting respiration–brain coupling as a fundamental mechanism to shape neural processing within canonical resting state and respiratory control networks (RCNs).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here