
Peli1 impairs microglial Aβ phagocytosis through promoting C/EBPβ degradation
Author(s) -
Jing Xu,
Tao Yu,
Enrica Pietronigro,
Yuan Jia,
Jessica Arioli,
Yanbo Pei,
Xuan Luo,
Jialin Ye,
Gabriela Constantin,
Chaoming Mao,
Yichuan Xiao
Publication year - 2020
Publication title -
plos biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.127
H-Index - 271
eISSN - 1545-7885
pISSN - 1544-9173
DOI - 10.1371/journal.pbio.3000837
Subject(s) - ubiquitin ligase , microglia , phagocytosis , microbiology and biotechnology , biology , ubiquitin , cd36 , receptor , immunology , biochemistry , inflammation , gene
Amyloid-β (Aβ) accumulation in the brain is a hallmark of Alzheimer’s disease (AD) pathology. However, the molecular mechanism controlling microglial Aβ phagocytosis is poorly understood. Here we found that the E3 ubiquitin ligase Pellino 1 (Peli1) is induced in the microglia of AD-like five familial AD (5×FAD) mice, whose phagocytic efficiency for Aβ was then impaired, and therefore Peli1 depletion suppressed the Aβ deposition in the brains of 5×FAD mice. Mechanistic characterizations indicated that Peli1 directly targeted CCAAT/enhancer-binding protein (C/EBP)β, a major transcription factor responsible for the transcription of scavenger receptor CD36. Peli1 functioned as a direct E3 ubiquitin ligase of C/EBPβ and mediated its ubiquitination-induced degradation. Consequently, loss of Peli1 increased the protein levels of C/EBPβ and the expression of CD36 and thus, promoted the phagocytic ability in microglial cells. Together, our findings established Peli1 as a critical regulator of microglial phagocytosis and highlighted the therapeutic potential by targeting Peli1 for the treatment of microglia-mediated neurological diseases.