z-logo
open-access-imgOpen Access
Peli1 impairs microglial Aβ phagocytosis through promoting C/EBPβ degradation
Author(s) -
Jing Xu,
Tao Yu,
Enrica Pietronigro,
Jia Yuan,
Jessica Arioli,
Yifei Pei,
Xuan Luo,
Jialin Ye,
Gabriela Constantin,
Chaoming Mao,
Yichuan Xiao
Publication year - 2020
Publication title -
plos biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.127
H-Index - 271
eISSN - 1545-7885
pISSN - 1544-9173
DOI - 10.1371/journal.pbio.3000837
Subject(s) - ubiquitin ligase , microglia , phagocytosis , microbiology and biotechnology , biology , ubiquitin , cd36 , receptor , immunology , biochemistry , inflammation , gene
Amyloid-β (Aβ) accumulation in the brain is a hallmark of Alzheimer’s disease (AD) pathology. However, the molecular mechanism controlling microglial Aβ phagocytosis is poorly understood. Here we found that the E3 ubiquitin ligase Pellino 1 (Peli1) is induced in the microglia of AD-like five familial AD (5×FAD) mice, whose phagocytic efficiency for Aβ was then impaired, and therefore Peli1 depletion suppressed the Aβ deposition in the brains of 5×FAD mice. Mechanistic characterizations indicated that Peli1 directly targeted CCAAT/enhancer-binding protein (C/EBP)β, a major transcription factor responsible for the transcription of scavenger receptor CD36. Peli1 functioned as a direct E3 ubiquitin ligase of C/EBPβ and mediated its ubiquitination-induced degradation. Consequently, loss of Peli1 increased the protein levels of C/EBPβ and the expression of CD36 and thus, promoted the phagocytic ability in microglial cells. Together, our findings established Peli1 as a critical regulator of microglial phagocytosis and highlighted the therapeutic potential by targeting Peli1 for the treatment of microglia-mediated neurological diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom