
Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation
Author(s) -
M. Sumetsky
Publication year - 2005
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/opex.13.004331
Subject(s) - resonator , optics , waveguide , microfiber , coupling (piping) , physics , coupling coefficient of resonators , photonic crystal , dispersion (optics) , dispersion relation , optical cavity , materials science , laser , metallurgy , composite material
The coil optical resonator (COR) is an optical microfiber coil tightly wound on an optical rod. The resonant behavior of this all-pass device is determined by evanescent coupling between the turns of the microfiber. This paper investigates the uniform COR with N turns. Its transmission characteristics are surprisingly different from those of the known types of resonators and of photonic crystal structures. It is found that for certain discrete sequences of propagation constant and interturn coupling, the light is completely trapped by the resonator. For N ? degrees degrees , the COR spectrum experiences a fractal collapse to the points corresponding to the second order zero of the group velocity. For a relatively small coupling between turns, the COR waveguide behavior resembles that of a SCISSOR (side-coupled integrated spaced sequence of resonators), while for larger coupling it resembles that of a CROW (coupled resonator optical waveguide).