Large second-harmonic generation of thermally poled sodium borophosphate glasses
Author(s) -
Marc Dussauze,
Evelyne Fargin,
M. Lahaye,
Vincent Rodriguez,
Frédéric Adamietz
Publication year - 2005
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/opex.13.004064
Subject(s) - poling , materials science , second harmonic generation , optics , anode , nonlinear optics , niobium , optoelectronics , electrode , laser , chemistry , physics , dielectric , metallurgy , ferroelectricity
Second harmonic generation (SHG) has been obtained in a rich in sodium niobium orophosphate glass by a thermal poling treatment. The thermally poled glass SHG signal has been studied through an original analysis of both transmitted and reflected polarized Maker-fringe patterns. Therefore, the second order nonlinear optical (NLO) efficiency was estimated from the simulation of the Maker-fringe patterns with a stepwise decreasing profile from the anode surface. A reproducible chi(2) susceptibility value as high as 5.0 +/-0.3 pm/V was achieved at the anode side. The nonlinear layer, found to be sodium-depleted up to 5 microm deep inside the anode side, identical to the simulated nonlinear zone thickness, indicates a complex space-charge-migration/ nonlinear glass matrix response process.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom