Aperiodic 1-dimensional structures for quasi-phase matching
Author(s) -
Andrew H. Norton,
C. Martijn de Sterke
Publication year - 2004
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/opex.12.000841
Subject(s) - aperiodic graph , optics , grating , fourier transform , diffraction grating , quasi phase matching , phase (matter) , poling , second harmonic generation , matching (statistics) , physics , materials science , dielectric , mathematics , optoelectronics , mathematical analysis , ferroelectricity , laser , statistics , combinatorics , quantum mechanics
We describe a method for designing 1-dimensional aperiodic poled grating structures of finite length that quasi-phase match multiple Chi((2)) processes. The poling functions for such gratings are best aligned, in terms of the dot product in Fourier space, with a design target. No restrictions are placed on the quasi-phase matching wave numbers. A grating designed for third harmonic generation is simulated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom