Optical coherence tomography through a rigid borescope applied to quantification of articular cartilage thickness in a porcine knee model
Author(s) -
Evan T. Jelly,
Zachary A. Steelman,
Adam Wax
Publication year - 2019
Publication title -
optics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.44.005590
Subject(s) - optical coherence tomography , articular cartilage , biomedical engineering , osteoarthritis , tomography , optics , computer science , materials science , medicine , physics , alternative medicine , pathology
There exists an unmet need for an optical coherence tomography (OCT) delivery scheme that is simple, robust, and applicable to general surgical applications. To deliver the beam in a narrow form factor, optical borescopes present an attractive potential solution. We present a method for enabling endoscopic delivery of OCT using a handheld rigid borescope adapted to a low-cost OCT engine. The system reduces the distal profile of the scanner, enabling application of the system in otherwise hard-to-access regions. The clinical potential of this design is demonstrated through real-time quantification of articular cartilage thickness, a primary biomarker of joint health during osteoarthritis. This platform has the potential to enable use of OCT for real-time feedback during arthroscopic surgery.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom