z-logo
open-access-imgOpen Access
Extraordinary polarization rotation of vector beams with high-period-number chiral photonic crystals
Author(s) -
Chun-Wei Chen,
Iam Choon Khoo
Publication year - 2019
Publication title -
optics letters/optics index
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.44.005306
Subject(s) - optics , polarization (electrochemistry) , photonic crystal , physics , optical rotation , rotation (mathematics) , materials science , mathematics , geometry , chemistry
We demonstrate by theory and experiments that well-aligned cholesteric liquid crystals that function as 1D chiral photonic crystals (CPCs) having extraordinarily large-period-numbers N (N=d/Λ; d: thickness, Λ: grating period) exceeding 500 possess many optical properties that are impossible with conventional thin CPCs. Even far from the circular Bragg resonance, these CPCs are capable of simultaneously high transmission and large broadband polarization rotation of vector beams; the polarization rotation is independent of relative orientation of the input beam polarization vectors, and a good degree of linear polarization of the output beam can be maintained.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here