
Correlated spatially resolved two-dimensional electronic and linear absorption spectroscopy
Author(s) -
Megan A. Steves,
Hongjun Zhang,
Kenneth L. Knappenberger
Publication year - 2019
Publication title -
optics letters/optics index
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.44.002117
Subject(s) - optics , spectroscopy , absorption spectroscopy , absorption (acoustics) , attenuation coefficient , materials science , physics , quantum mechanics
A multimodal method for correlating linear and nonlinear optical spectra with a spatial resolution is presented. Using a partially collinear pump-probe geometry and two-frame phase-cycling, ultrafast two-dimensional electronic spectroscopy (2DES) was performed with transverse-spatial and temporal resolutions of 17 μm and 80 fs, respectively. Time-resolved 2DES maps were spatially correlated with linear extinction spectra obtained in the same imaging platform, enabling the examination of state-resolved dynamics of spatially heterogeneous materials. Thin films of aggregated CdSe nanocrystals were studied to demonstrate the combined spectral, temporal, and imaging capabilities of this method.