z-logo
open-access-imgOpen Access
Acousto-optically modulated quantum cascade laser for high-temperature reacting systems thermometry
Author(s) -
Zachary Loparo,
Erik Ninnemann,
Kyle Thurmond,
Andrew Laich,
Ahmad Azim,
Arkadiy Lyakh,
Subith Vasu
Publication year - 2019
Publication title -
optics letters
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.44.001435
Subject(s) - quantum cascade laser , materials science , cascade , shock wave , laser , optics , shock (circulatory) , atmospheric temperature range , temperature measurement , isentropic process , atomic physics , physics , thermodynamics , chemistry , medicine , chromatography
We demonstrate time-resolved temperature measurements in shock-heated mixtures of carbon monoxide over a temperature range of 1000-1800 K for two pressure ranges, 2.0-2.9 atm and 7.6-10.7 atm, at rates up to 250 kHz using a single acousto-optically modulated quantum cascade laser with mid-infrared output spanning from 1975 to 2260  cm -1 . Measured temperatures were in excellent agreement with values determined by ideal shock relations, and the temperature profile after the passage of the reflected shock wave was found to be well-modeled by an isentropic compression assumption. Temperature measurements made with this setup are largely immune to effects of emissions and beam steering, making the diagnostic system well-suited for studying high-temperature gas-phase reactions of energetic materials such as octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and hexahydro-1,3,5-trinitro-1,3,5-triazine.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom