Acousto-optically modulated quantum cascade laser for high-temperature reacting systems thermometry
Author(s) -
Zachary Loparo,
Erik Ninnemann,
Kyle Thurmond,
Andrew Laich,
Ahmad Azim,
Arkadiy Lyakh,
Subith Vasu
Publication year - 2019
Publication title -
optics letters
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.44.001435
Subject(s) - quantum cascade laser , materials science , cascade , shock wave , laser , optics , shock (circulatory) , atmospheric temperature range , temperature measurement , isentropic process , atomic physics , physics , thermodynamics , chemistry , medicine , chromatography
We demonstrate time-resolved temperature measurements in shock-heated mixtures of carbon monoxide over a temperature range of 1000-1800 K for two pressure ranges, 2.0-2.9 atm and 7.6-10.7 atm, at rates up to 250 kHz using a single acousto-optically modulated quantum cascade laser with mid-infrared output spanning from 1975 to 2260 cm -1 . Measured temperatures were in excellent agreement with values determined by ideal shock relations, and the temperature profile after the passage of the reflected shock wave was found to be well-modeled by an isentropic compression assumption. Temperature measurements made with this setup are largely immune to effects of emissions and beam steering, making the diagnostic system well-suited for studying high-temperature gas-phase reactions of energetic materials such as octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and hexahydro-1,3,5-trinitro-1,3,5-triazine.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom