
Acousto-optically modulated quantum cascade laser for high-temperature reacting systems thermometry
Author(s) -
Zachary Loparo,
Erik Ninnemann,
Kyle Thurmond,
Andrew Laich,
Ahmad A. Ahmad,
Arkadiy Lyakh,
Subith Vasu
Publication year - 2019
Publication title -
optics letters/optics index
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.44.001435
Subject(s) - optics , quantum cascade laser , cascade , materials science , laser , quantum optics , optoelectronics , physics , chemistry , chromatography
We demonstrate time-resolved temperature measurements in shock-heated mixtures of carbon monoxide over a temperature range of 1000-1800 K for two pressure ranges, 2.0-2.9 atm and 7.6-10.7 atm, at rates up to 250 kHz using a single acousto-optically modulated quantum cascade laser with mid-infrared output spanning from 1975 to 2260 cm -1 . Measured temperatures were in excellent agreement with values determined by ideal shock relations, and the temperature profile after the passage of the reflected shock wave was found to be well-modeled by an isentropic compression assumption. Temperature measurements made with this setup are largely immune to effects of emissions and beam steering, making the diagnostic system well-suited for studying high-temperature gas-phase reactions of energetic materials such as octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and hexahydro-1,3,5-trinitro-1,3,5-triazine.