
Extension of water-window harmonic cutoff by laser defocusing-assisted phase matching
Author(s) -
Cheng Jin,
Ming-Chang Chen,
Hung-Wei Sun,
C. D. Lin
Publication year - 2018
Publication title -
optics letters/optics index
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.43.004433
Subject(s) - optics , water window , laser , wavelength , cutoff , high harmonic generation , harmonic , physics , phase (matter) , materials science , extreme ultraviolet , quantum mechanics
We extend a recently demonstrated scheme [Optica4, 976 (2017)OPTIC82334-253610.1364/OPTICA.4.000976] to overcome the limit of conventional harmonic cutoff for different pulse durations, laser wavelengths, and gas targets. By tuning the truncation of long wavelength lasers, we show that the defocusing-assisted phase matching (DAPM) can be achieved in a tightly focused beam and highly ionized short gas cell, and can be used to effectively extend the harmonic cutoff energy and optimize its yield. An analysis of phase matching reveals that at longer wavelengths, greater cutoff extension to the water window region is achieved because of the larger harmonic intrinsic phase (proportional to the cube of laser wavelength), and because DAPM works at relatively higher laser intensities using a Ne target. This scheme provides a promising method for efficiently generating intense attosecond light sources in the extreme ultraviolet to x-rays.