
Highly efficient terahertz photoconductive metasurface detectors operating at microwatt-level gate powers
Author(s) -
Lucy L. Hale,
Charles Thomas Harris,
Ting S. Luk,
Sadhvikas Addamane,
John L. Reno,
Igal Brener,
Oleg Mitrofanov
Publication year - 2021
Publication title -
optics letters/optics index
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.427798
Subject(s) - terahertz radiation , optoelectronics , photoconductivity , detector , optics , photocurrent , materials science , physics
Despite their wide use in terahertz (THz) research and technology, the application spectra of photoconductive antenna (PCA) THz detectors are severely limited due to the relatively high optical gating power requirement. This originates from poor conversion efficiency of optical gate beam photons to photocurrent in materials with sub-picosecond carrier lifetimes. Here we show that using an ultra-thin (160 nm), perfectly absorbing low-temperature grown GaAs metasurface as the photoconductive channel drastically improves the efficiency of THz PCA detectors. This is achieved through perfect absorption of the gate beam in a significantly reduced photoconductive volume, enabled by the metasurface. This Letter demonstrates that sensitive THz PCA detection is possible using optical gate powers as low as 5 µW-three orders of magnitude lower than gating powers used for conventional PCA detectors. We show that significantly higher optical gate powers are not necessary for optimal operation, as they do not improve the sensitivity to the THz field. This class of efficient PCA THz detectors opens doors for THz applications with low gate power requirements.