Scaling theory of absorption in the frozen mode regime
Author(s) -
William Tuxbury,
Lucas J. Fernández-Alcázar,
Ilya Vitebskiy,
Tsampikos Kottos
Publication year - 2021
Publication title -
optics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.425060
Subject(s) - inflection point , scaling , optics , amplitude , physics , degeneracy (biology) , condensed matter physics , scattering , absorbance , dispersion relation , anderson localization , materials science , mathematics , bioinformatics , geometry , biology
A stationary inflection point (SIP) of the Bloch dispersion relation of a periodic system is a prominent example of an exceptional point degeneracy (EPD) where three Bloch eigenmodes coalesce. The scattering problem for a bounded photonic structure supporting a SIP features the frozen mode regime (FMR), where the incident wave is converted into the "frozen mode" with vanishing group velocity and diverging amplitude. We analyze the effect of losses and disorder on the FMR and develop a scaling formalism for the absorbance in the FMR that takes into consideration losses, disorder, and system size. The signatures of the EPD appear as an abrupt growth of absorbance for system sizes greater than a characteristic length that follows a parallel resistance law involving the absorption length and the Anderson localization length.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom