Pulse-burst spontaneous Raman thermometry of unsteady wave phenomena in a shock tube
Author(s) -
Caroline Winters,
Timothy Haller,
Sean P. Kearney,
Philip L. Varghese,
Kyle P. Lynch,
Kyle Daniel,
Justin Wagner
Publication year - 2021
Publication title -
optics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.420484
Subject(s) - shock wave , shock (circulatory) , adiabatic process , shock tube , laser , pulse (music) , materials science , optics , physics , thermodynamics , medicine , detector
A high-speed temperature diagnostic based on spontaneous Raman scattering (SRS) was demonstrated using a pulse-burst laser. The technique was first benchmarked in near-adiabatic ${{\rm H}_2} \text{-} {\rm air}$ flames at a data-acquisition rate of 5 kHz using an integrated pulse energy of 1.0 J per realization. Both the measurement precision and accuracy in the flame were within 3% of adiabatic predictions. This technique was then evaluated in a challenging free-piston shock tube environment operated at a shock Mach number of 3.5. SRS thermometry resolved the temperature in post-incident and post-reflected shock flows at a repetition rate of 3 kHz and clearly showed cooling associated with driver expansion waves. Collectively, this Letter represents a major advancement for SRS in impulsive facilities, which had previously been limited to steady state regions or single-shot acquisition.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom