z-logo
open-access-imgOpen Access
High-sensitivity, fast-response ethanol gas optical sensor based on a dual microfiber coupler structure with the Vernier effect
Author(s) -
Yuxuan Jiang,
Yating Yi,
Gilberto Brambilla,
Pengfei Wang
Publication year - 2021
Publication title -
optics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.418953
Subject(s) - optics , materials science , sensitivity (control systems) , attenuation , microfiber , responsivity , detector , physics , composite material , electronic engineering , engineering
A high-sensitivity ethanol gas sensor based on two microfiber couplers and the Vernier effect is examined in this Letter using the unique variation rate conversion point characteristics. The output spectrum of the two couplers connected in parallel are superimposed to form a symmetrical envelope curve, showing high responsivity to variations in the external environment. Ethanol sensitivity was achieved by coating the waist region of the coupler with a mixture of Nile red and polymethyl methacrylate. When the concentration of ethanol gas changes, the envelope spectrum shifts. Experimental results show that a high responsivity of 160 pm/ppm can be obtained by tracing the reference peaks in the envelope curve and that the response and recovery times are on the order of seconds.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom