
Quantitative amplitude-measuring Φ-OTDR with pε/√Hz sensitivity using a multi-frequency pulse train
Author(s) -
Matthew J. Murray,
Brandon Redding
Publication year - 2020
Publication title -
optics letters/optics index
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.400159
Subject(s) - amplitude , rayleigh scattering , reflectometry , optics , materials science , analytical chemistry (journal) , physics , computer science , time domain , chemistry , computer vision , chromatography
We report an amplitude-measuring Rayleigh-based sensor that uses a series of frequency-shifted pulses to extract quantitative distributed strain measurements. By using frequency multiplexing, we are able to inject a train of 10 pulses into the fiber at once. This allows us to use a higher average input power than standard phase-sensitive optical time domain reflectometry systems, improving the sensitivity. The sensor recovers the strain by tracking the time-dependent amplitude of the Rayleigh backscattered light from all 10 pulses. This approach enables a sensor with a noise floor of 1.5 p ε/√ H z over 10 km of fiber with 12 m spatial resolution, a 5 kHz bandwidth, and a dynamic range of 80 dB at 1 kHz. The sensor exhibits a high degree of linearity and is immune to interference fading.