
Design of ultra-small mode area all-dielectric waveguides exploiting the vectorial nature of light
Author(s) -
Nazmus Sakib,
Judson D. Ryckman
Publication year - 2020
Publication title -
optics letters/optics index
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.394848
Subject(s) - plasmon , optics , dielectric , photonics , optoelectronics , nonlinear optics , physics , nanophotonics , scaling , waveguide , diffraction , quantum optics , laser , geometry , mathematics
The wave nature and diffraction of light pose a significant bottleneck to the continued performance and efficiency scaling of a wide variety of integrated photonic devices, often necessitating solutions based on resonance, slow-light, or plasmonics to derive enhanced light-matter interaction. Here, we introduce all-dielectric waveguides that exploit the vectorial nature of light to achieve strong subdiffraction confinement in high index dielectrics, enabling characteristic mode dimensions below λ 02/1000 without metals or plasmonics. We further show how these ultra-small mode areas may coincide or diverge from the nonlinear effective mode area. The work opens the door to new types of waveguide-based devices featuring strong near-field confinement, Purcell factors, and nonlinear effects, with broad applications spanning classical and quantum optics.