z-logo
open-access-imgOpen Access
Microfluidic flow direction and rate vector sensor based on a partially gold-coated TFBG
Author(s) -
Changyu Shen,
Dejun Liu,
Xiaokang Lian,
Tingting Lang,
Chunliu Zhao,
Yuliya Semenova,
Jacques Albert
Publication year - 2020
Publication title -
optics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.392511
Subject(s) - materials science , fiber bragg grating , wavelength , optics , microfluidics , volumetric flow rate , grating , optoelectronics , nanotechnology , physics , quantum mechanics
In microfluidic chips applications, the monitoring of the rate and the direction of a microfluidic flow is very important. Here, we demonstrate a liquid flow rate and a direction sensor using a partially gold-coated tilted fiber Bragg grating (TFBG) as the sensing element. Wavelength shifts and amplitude changes of the TFBG transmission resonances in the near infrared reveal the direction of the liquid flowing along the fiber axis in the vicinity of the TFBG due to a nanoscale gold layer over part of the TFBG. For a device length of 10 mm (and a diameter of 125 µm for easy insertion into microfluidic channels), the flow rates and the direction can be detectable unequivocally. The TFBG waveguiding properties allow such devices to function in liquids with refractive indices ranging from 1.33 to about 1.40. In addition, the proposed sensor can be made inherently temperature-insensitive by referencing all wavelengths to the wavelength of the core mode resonance of the grating, which is isolated from the fiber surroundings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom